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AbstraEL We mosider the effect of the nearest-neighbour mpper-qgen repulsion, V, 
when mupled to the charge transfer resonanas Cu2+ + Cu3+ and Cu2+ + cU+ in the 
high-temperature mprate supemdunom. This k done by deriving effective low-energy 
Hamiltonians coned. to second order in the m p p e r q g e n  hybridization. Only hole 
doping is mnsidered. When Cu2+ + Cuw Buctuations dominate we derive an effective 
one-band model of 'Zhang-Rice' singlets with a nearest-neighbour repulsion between 
thcse singlets. When Cu" -+ Cu+ fluctuations d0miMte we fmd rich and complex 
kiwiour .  If 0 a V/A 6 4 (where A is the 'bare' mpper-axygen charge transfer gap) 
we show that dusters of charge are more siable than Mated  &axes. On the other hand, 
if 0 < VIA a + the Hamiltonian contains both weak amactive and repulsive Wo-body 
potentials. Calculations on duten indicate that the attractive potentiah have the same 
"elations as the more dominant 'single-partide' femD suggesting the pmibility of 
%'-wave pairing. 

l. Introduction 

An unusual feature of the copper oxide high-temperature superconductors is the 
close proximity of the atomic copper and oxygen energy levels. This leads to charge 
transfer resonances of the type Cu2+ -+ Cu3+ and Cut+ -+ a+. Varma, Schmitt- 
Rink and Abrahams [l] were the first to offer general argumena that these charge 
transfer resonances, coupled to the nearest-neighbour copper-oxygen repulsion, could 
lead to 's-wave' superconductivity. Numerical [&3] and mean-field ca l~ la t iom 
[4,q confirmed that charge clustering and superconducting instabilities are indeed 
a possibility for certain parameter ranges. 

In this paper we address this issue by deriving an effective low-energy Hamiltonian 
from the natural tight-binding Hamiltonian for the copper-oxide planes [6] which 
includes the mpper and oxygen orbitals on an equal footing. 'Ihi is 
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(1.lb) 

where d!o and p:,, create holes in the relevant hybridizing orbitals on copper (site 
label i) and oxygen (site label j) atoms respectively. ?he vacuum of (1.1) is the 
closed shells d’” (GI+) and p6 (e-). A is the ‘bare’ charge transfer gap, t is 
the hopping matrix element connecting copper and oxygen sim, V is the nearest- 
neighbour copper-oxygen Coulomb repulsion and the Us are the on-site Coulomb 
repulsions. Spectroscopic evidence [7l and fittings to constrained density lunctional 
calculations [S] suggest that U - 9 eV, Up.- 5 eV, V - 0.8 eV, A - 3 eV and 
2 - 1.5 e\! Another term, which is sometimes considered, is the direct oxygen- 
oxygen hopping matrix element, tpp - 0.6 ex which has the effect of renormalig 
the charge transfer gap. This term will not be considered in thir paper. The ’parent’ 
mmpund has one hole in every copper orbital (d’) and empty oxygen orbitals (p6). 

Our approach is to treat t perturbatively, relegate all the other energy scales 
to zero or insnily and perform a Schrieffer-Woolf canonical transformation [9,10] 
on (1.1) in the presence of the nearest-neighbour Coulomb repulsion. This derives 
an effective Hamiltonian whose leading order hopping term is O(t2), and where 
there are residual many-body effects resulting from the copper4xygen repulsion. 
The restriction to second order in the hybridization does mean, however, that we 
cannot include the antiferromagnetic super-exchange effects; directly; we therefore 
only mnsider the effects caused by the motion of charge carriers. In pMciple, spin 
fluctuations can be included on an ad hoc basis by adding a Heisenberg term to the 
effective Hamiltonians. 

This method has been used by Fedro and Schettler [Ill and the present authors 
[I21 to derive an effective Hamiltonian for electron doping. In thii case the low- 
energy physics is described by a one-band Hubbard model with a nearest-neighbour 
repulsion of the charge carriers which reside on the copper sites. In this paper we 
only consider hole doping. In section 2 the motion of charge camers via virtual Cu3+ 
excitations is considered. We find that an essentially single-band model describing 
the motion of the ‘Zhang-Rice’ singlet [13], with a nearest-neighbour repulsion of 
these singlets, is appropriate. In sections 3, 4 and 5 a detailed discussion of the 
motion of charge camers via virtual Cu+ excitations is given. We find quite different 
and very rich behaviour. First, even the motion of a single oxygen hole becomes 
dillicult to analyse, rendering the ‘Zhang-Rice’ ana@& incomplete. Second, when 
0 g V/A < we find that charge clustering occurs. Thud, when 0 < V/A < $ we 
find evidence €mm cluster calculations for weak-coupling “ w e ’  superconductivity, 
in agreement with the mean-field analyses [4,5]. The conclusions of this work have 
been presented elsewhere [14]. Finally, we conclude this paper in section 6. 

2. Motion of holes via Cu3+ excitations 

In the two-band model (1.1) in the atomic limit there are two natural charge states for 
the added hole. The first possibility is that the copper sites dominate with the holes 
forming Cu3+. The second is that both copper and oxygen sites must be considered 
with the added hole residing on oxygen sites as 0-, and these holes move about in a 
spin background residing on the copper sites. The second case will only be considered 
as this is experimentally more justifiable [A. WIth the assumption that the holes 
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reside predominantly on oxygen sites there are still two important limits to consider 
as the hybridization is increased. If the direct oxygen-oxygen hybridization is small 
then delocalization occurs across copper sites. There are two distinct mechanisms 
for hole motion. The first is to assume that added holes hop between oxygen sites 
via an intermediate state in which the copper site is doubly occupied with holes, 
namely Cux. ’Ihe semnd is to assume that in the intermediate state a hole vacates 
the q p e r  site leaving a closed shell, namely Cu+. The experimental evidence is 
in favour of the latter, but in this section we consider the former possibility. We 
treat only virtual occupancy of the intermediate charge states, separating out the two 
physical &em by allowing the copper Coulomb repulsion, U, to diverge. In this 
section we enforce this by allowing A -+M while (U-A) <CO. 

The assumptions that each new d state is singly occupied and that the intermediate 
state involves the Cu3+ gives, by the second-onler canonical transformation [9,10] 
(details may be found in [IZ]), 

for the O(t2) part of the Hamiltonian, with the ‘singlet’ operator being defined as 

and the matrix element 

where P, = E, p,’,pju is the oxygen hole operator. 
The form of this description may be readily understood. Since the intermediate 

state involves two holes on a copper site the relevant olcygen hole must be in a singlet 
configuration with respect to the copper site that hybridizes with it. The S!j operators 
create precisely the relevant spin configuration. 

In order to understand the mauix elements, however, we study the states that the 
’new’ operators create. The df, creates a pure copper hole in this l i t  The energy 
gap between this bole and the neighbouring oxygen levels is assumed to be. infinite, so 
the hole g a b  nothing by hybridizing. The piu creates a hole that is predominantly 
on the oxygen site but is optimally hybridized onto the two neighbouring copper sites, 
when the ‘oxygen’ hole resides on an oxygen site it is repelled by both neighbouring 
copper holes. However, when it resides on a copper site it is repelled by the holes on 
neighbouring oxygen sites. m e  first consequence of this repulsion is that doped holes 
only reside on the oxygen sites provided that U > A + ZV, so the nearest-neighbour 
repulsion tends to push the doped holes onto the copper sites in this limit The second 
and more important consequence is that the nearest-neighbour repulsion between the 
copper and oxygen holes induces a many-body repulsion between charge carriers. 
This is because when several ‘oxygen’ holes neighbour the same copper site, partial 
occupation by one of those holes on the copper site results in a repulsion between 
that hole and all the other ‘oxygen’ holes. This is a peculiarity to the topology of the 
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copper oxide kttice: each copper site has four neighbouring oxygen sites, but each 
oxyge3 site has only two neighbouring copper sites. 

We may derive the repulsion directly by performing the inversion of the operator 
f i j  (2.1~). Since f i j  is a sum of commuting operators the inversion b hivial, and a 
general prescription is derived in the appendix. For the m e  where Up + 03 we find 

W Borfod and M W Lung 

where 

H ,  = Dz S!j PpS;j, 
( i j l )  ( i j ‘ l )  

H 3 = - D 3  S!jP,PmSjjr 
( i j lm)  (ij’lm) 

from which it is evident that the two-particle interactions (represented in H z )  are 
repulsie. 

Let us now consider the solution to the singleparticle problem for this kttice. 
The basic conceptual difficulty is that the oxygen hole wants to be simultaneously in a 
singlet configuration with both of its neighbouring copper holes, and this is impossible. 
A simple description can only be achieved by considering states with local singlets (see 
figure 1). The problem with this description is that it is non-orthogonal. The state 
in figure l(a) has probabsties 1 and 1/2 of being in a singlet with the left and right 
copper holes. The state in figure l(b) is linearly independent with the probabilities 
reversed. These two states form a complete basis but have a non-mal overlap. 

There are several excitations which are easy to describe and which may be thought 
of as ’non-bonding’. In figure l(c) three phase combinations of the four local singlet 
states connected to the central copper atom are shown. Any state that corresponds 
to a closed curve is an eigenstate of the Hamiltonian with zero hybridization energy. 
Several such states are depicted in figure l(d). There is a natural separation of these 
states into those where the singlets are centred on the antiferromagnetic sublattice 
and those centred on the other sublattice. These states take care of three quarters of 
such states leaving the combination depicted in figure l(e). In this limit the states of 
Zhang and Rice [13] can be justified, as also shown by Zhang [15]. All we need now 
is the Hamiltonian restricted m these states. 

Denoting the uniform phase sum of figure l(e) as S! (the ‘Zhang-Rice’ singlet), 
we. find that at the one-oxygen-hole level 

l =  t 2 / ( U  - A - 2 V )  
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Qm-e 1. The limit with one mobile hole. Z The relwant energy scales for the 
(a), @) The natural debitions for local sngletr (c) induced many-body interddions in this dsdption. 
The MO-bonding mmbinations of local ringlets. (d) ?he submipt denotes the number of mygen holes 
Various non-bonding eigenstates d the cU3+ limit. taking pan in the interaction. The B and C denote 
(e) The (anding mmbination of local singlets. the axffidenu 10 the diagonal and olfdiagonal 

terms, rapectiveiy. 

where we mume h t  the S/s are orthogonal. The S,! may be considered as a 
'vacancy' in the one-band Hubbard model in the strongcoupling limit. Indeed the 
s p e c "  is identical since the orthogonality matrix is invertible and the solutions 
to the problem in which the S,~S are assumed orthogonal a~so diagonalize the non- 
orthogonal problem. The Nagaoka theorem 1161 therefore holds, and the 'vacancy' 
spectrum of the ferromagnetic branch is 

= -85- 25[COS(2kSa) + COS(2kYa)] + A/2 (2.4) 

with a ground state at -12i+ A/2 when k = 0. 
Although at the one-particle level the spectrum is identical to that of the Hubbard 

model, it is noteworthy that at the two-particle level the non-xthogonality becomes 
important This results in a nearest-neighbour repulsion between charge carriers, in 
addition to that resulting from the mpper-oxygen repulsion 

3. Motion oh holes via Cut excitations: the basic behaviour of the Hamilitonian 

When virtual double occupation of mpper sites is excluded so that only virtual Cu+ 
excitations are permitted, the order-t2 Hamiltonian becomes, in the b i t  Up + m, 
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f i j = 4 + v - v C P ,  
( i J I )  

fijj, = 4 - v P,. 
( i J j ' l )  

The inversion of f leads m the following terms in the Hamiltonian: 

H4= B4 D;pjPj.PkP, 
(ij j ' k i )  

where ( i ; j j ' k )  denotes that the three oxygen sites j,j' and k are all distinct and 
neighbour the copper site i, and that the sum runs over all permutations of the indices. 
The operators d:, and pj,, create holes predominantly on the copper and oxygen 
sites, respectively, but with the optimal amount of hybridization onto neighbouring 
sites. The hole number operators are Di = E, dl,di, (P 1 )  and P, = E, pf,pj , ,  
respectively. F i l l y ,  the energy scales are 

The structure of the Hamiltonian is shown in equation (3.2) where it has k e n  
decomposed into terms representing the number of charge carriers involved. There 
are two parts to each term. Fit, a diagonal part, with coefficient B, which represents 
the static energy of the copper spin and the surrounding oxygen holes. Second, an 
offdiagonal part, with coefficient C, which represents the hopping of an oxygen hole 
from one site to another in the presence of the copper spin and the relevant number 
of additional oxygen holes. The coefficients B and C are given in equation (3.3), and 
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plotted as a function of V/A in figure 2 The spin-independent terms have absolute 
magnitude, but the hole motion terms depend on the relative phase of the hole states. 

We consider first the diagonal coefficients. Figure 2 shows that these terms are 
negative (atnactive) when V/A > f .  This may be understood as follows: recall 
that the operator dl., creates a hole localized on a copper site which is maximally 
hybridized onto the neighbouring oxygen sites. nte correction to the on-site energy of 
a ‘copper‘ hole when there are no neighbouring oxygen holes is -4fz/(A + V). The 
factor of 4 arises because there are four empty sites, and the denominator contains 
a V because during the virtual occupation of the oxygen site a repulsion from the 
neighbouring copper hole is experienced. Next, consider the correction to the on- 
site energy of a ‘copper‘ hole when there is one neighbouring oxygen hole. This is 
-3t’lA. Since Up is assumed large, one of the oxygen sites c a ~ o t  be. hybridized 
with, hence the factor 3. However, now the denominator is just A, because although 
the *copper‘ hole experiences a repulsion from the neighbouring ‘copper‘ hole during 
the virtual occupation of the oxygen site, it also moids the repulsion arising from 
the presence of the oxygen hole. By similar arguments it is easy to show that the 
on-site energy corrections are -2t2/(A - V) and -t2/(A - 2V) for a ‘copper’ hole 
surrounded by two and three oxygen holes, respectively. If there are four oxygen 
holes surrounding a copper site, then the ‘copper‘ hole cannot hybridize at all. 

Now consider the energy difference between having two oxygen holes neighbouring 
:he same copper site, and two separated oxygen holes. This is 

0.4) 
2tZ 6f2 2f2V(A - 3V) +-= 4tZ 

A + V  A - V  A ( A - V ) A ( A + V )  

which is recisely Bz (when summed over both permutations) and is negative when 

the hole’s virtual vacation of the copper site, Coulomb repulsion is avoided. There is 
more Coulomb repulsion avoided if there are more oxygen holes sorrounding the Same 
copper site, hence leading to short-range attractive potentials. Clearly, V/A > f is 
an overestimate on the strength of V because of the blocking of occupied oxygen 
sites in the Up + 00 limit 

W i n g  now to the offdiagonal terms, the matrix element to hop an oxygen hole 
from one site to another when there are IE other holes present is @/(A - nV), or 
0 if n = 4. Thus the amplitude of the matrix elements increases if there are more 
holes present. The reason is the Same as above: Coulomb repulsion is avoided during 
the d u a l  Cu+ excitation. This is of course the ’bare’ matrix element and does not 
indicate the loss of b e t i c  energy resulting from occupied sites. 

The question as to whether there are attractive channels for V/A < 4 depends on 
the sign acquired by the phase of the off-diagonal terms. This requires diagonalizing 
the Hamiltonian (3.2) which we address in the following sections. 

The physics of the dominant interactions shown in figure 2 are clear. As the 
nearest-neighbour repulsion is increased there is a transition from a basically single- 
particle picture with weak two-particle interactions into a regime where three-particle 
interactions dOmh?te. In section 4 we look at the three-particle regime invohing 
clustering. When the single-particle energies dominate we expect the particles to 
delocalize and in the low-density limit the two-particle interactions will be the second 
most important interaction. In section 5 we consider this more realistic picture. 

V/A > $. P The essential physics, which will reappear in other sections, is that during 
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4. The dustering limit 

In this section we analyse the behaviour of the Hamiltonian (3.2) in the limit where 
the three- and four-particle energy scales dominate. There is ‘charge clustering’ in this 
limit. The energy gain from delocalizing the holes is dominated by the short-range 
Coulomb effects, and bound states of several holes OCCUT. We consider the questions 
of how many holes cluster together, and whether there are any residual dynamics. 

There are some obvious physical questions to resolve before we proceed to a 
solution in this limit Charge clustering is forbidden by the long-range nature of 
the Coulomb interaction, and so the ef€ecui that we are describing are to a certain 
extent ‘unphysical’. Although long-range Coulomb interactions are omitted from a 
tight-binding description, because charge Euctuations are assumed screened, if this 
contribution were included it may not invalidate dustering on short length scales. 
On long length scales the charge remains homogeneous, while locally the charge 
dusters into either ‘bubbles’ or a sort of ‘honeycomb’ structure. Jf this picture is 
seriously considered then we must ask whether such a pattem could be dynamic, and 
hence lead to local charge fluctuations and a possible exotic lype of superconductivity. 
We do not take these possibilities seriously, but the wealth of possible phenomena 
exhibited by our description deserves discussion. 

There are two distinct types of clustering with a transition between these two 
types of behaviour when 2V = A. One type of dustering occurs when 2V > A and 
results in a complete change of ground state. This is considered in section 4.1. ’IXe 
other type of clustering occurs when 2V approaches A from below, and k discussed 
in section 4.2 The behaviour at the transition, 2V = A, is pathologicak the three- 
and four-body energy scales diverge and there appears to be a discontinuous change 
in hole density. 

4.1. Static charge clustering 2V > A 
In this limit there is a static change in the ground state provided that there is a 
sufficient number of holes. Copper holes vacate their sites and reside on neighbouring 
oxygen sites in order to avoid the local Coulomb repulsion, V. These vacated copper 
sites duster together, along with any added oxygen holes, to form a region of the 
lattice With singly occupied oxygen sites and vacant copper sites. Such a configuration 
obviously avoids the local repulsion, V, except at any boundary between regions. In 
a macroscopic cluster there are two holes per unit cell corresponding to one doped 
oxygen hole together with the original copper hole in the undoped phase. Comparing 
the energy per added hole in the macroscopic cluster to that of an isolated hole on 
an oxygen site immediately gives the criterion 2V = A for the phase transition. This 
corresponds to the balance between the local Coulombic repulsion avoided and the 
loss from expelling a hole from a copper to an oxygen site. 

This argument ignores boundary effects which would become important if the 
duster were to split up into smaller droplets. Indeed, a droplet of six holes is only 
stable if V > 3A, and a droplet of forty holes is only stable if V > 5A/6. 

Although this limit is not a physically realistic one, it illustrates the dustering of 
oxygen holes being driven by the copper-oxygen repulsion. In this case there is a static 
change of state from Cuzt + Cu+. This transition arises because Coulomb repulsion 
between holes is avoidedprovided that the holes on q g e n  sites duster together. This 
result is a direct consequence of the unusual topology of the copper oxide planes in 
that copper sites have four neighbouring oxygen sites, whereas oxygen sites have only 

WBtUjord and M W Long 
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two neighbouring copper sites. For smaller values of V the Cuz+ + Cu+ fluctuations 
are virtual. Nevertheless the same arguments apply; Coulomb repulsion is avoided if 
the oxygen holes cluster around the same copper site, implying short-range attractive 
potentials. 

4.2 Qnnmic chnlge clustering 2V < A 
As 2V aproaches A from below the three- and four-body t e m  dominate. There 
is a complication, however, in that the four-particle term is necessarily repulsive (in 
the largeup limit) and so the simple static picture of all the oxygen sites in some 
region being filled is invalid. There is a dynamic contribution to the energy, since the 
resonant energy is only saved when a copper site is surrounded by three oxygen holes. 
The physical source of this problem iF easy to understand; if all four oxygen sites are 
occupied the mpper hole is unable to move and so there is no virtual process to 
resonate. 

Now, the static terms of (3.2) are independent of spin, but the dynamic terms 
depend on the spin coherence of the mpper and oxygen holes. If we regard the 
resonant term as arising from the motion of vacancies in a background of holes, 
then by invoking the Nagaoka theorem [16] we can determine the spin coherence. 
Examination of the Hamiltonian (3.24 shows that vacancy movement is unfmtrated, 
with negative hopping amplitude. The Nagaoka theorem then informs us that the 
maximum kinetic enera  is gained (in the lowdensity limit) with a ferromagnetic spin 
background. Consequently, we. restrict our attention to ferromagnetism, assuming 
that in a cluster of mpper and oxygen holes all the spins are polarized. 

The Hamiltonian ( 3 . 2 4  (3.24 then becomes 

H = - A ,  PjPjJPk+3A,  pfPkPlpj,+A4 qP,P,P,.  (4.1) 
( i i j ' k )  ( i ; j j ' k l )  ( i ib lm)  

This is not a particularly transparent representation and so we consider a description 
based around the cluster limit, where the number of holes is large and we may expand 
away from the case where each oxygen site has one hole. The excitations are now 
particle-lie and we denote a particle by the creation operator q!. In terms of the 
new vacuum the Hamiltonian (4.1) is 

H = -A4 [ Q J ( ~ -  Q k ) ( l -  Q i X 1 -  Q,) + 3&dl- Qi)(I- QA1. ( 4 4  
(iijklm) 

This Hamiltonian is readily understood. Once the multiple munting of the terms has 
been extracted, we find that a single particle can move to any of the four oxygen sites 
surrounding a neighbouring copper site with hybridization -6A,, provided that it is 
the only particle neighbouring that mpper site. 

The difficulty in sowing (4.2) is deciding upon the lcml density of holes. If the 
holes cluster together and form a dense region then the representation (4.2) becomes 
the natural description. This Hamiltonian then describes the motion of vacancies in a 
duster almost full of holes. If there were no vacancies there would be no contribution, 
and this is just the realization of the fact that a mpper hole onnot move if all four 
neighbouring oxygen sites are full. In order to gain kinetic energy there must be 
vacancies, but how many? The cluster will assume a size that allows the optimal gain 
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in vacancy kinetic energy. ’lb determine what this might be we consider the evidence 
from different clusters. 

We have solved the duster problems corresponding to the configurations depicted 
in figure 3. In order to compare the results we look at the gain per hole. For the 
plaquette of figure 3(u) there is one vacancy with an energy gain of -SA, per hole. 
Rx the two connected plaquettes of figure 3(b) there are hvo vacancies with a gain of 
-8.4A4 per hole. The krger cluster is relative& stable. The star of fie copper a t o m  
(figure 3(c)) has four vacancies with a gain of -8.3247A4 per hole. Fmally, the square 
of figure 3(d) has four vacancies with an energy of -9A4 per hole. Obviously the 
ground state will be a macroscopic cluster. The density of vacancies is probably not 
far from a value of half a hole per cell, and hence we would predict a discontinuity 
in the density of holes when 2V = A. The loop problems of figura 3(e)-(h) show 
the surprising result that the best solution is independent of the length of the loop 
at -9A4. We postulate that this 6 also the infmite-loop result Considering a square 
array of nine copper sites with the eight ‘edge’ sites considered as a loop and the 
central site as a ’perturbation’ should immediately convince. the reader that a more 
compact cluster is better than a loop. 

It should be bome in mind that the gain in energy from extending the size of 
the cluster is minor and could easily be overcome, leading to a delocalized triple 
of holes. The long-range electrostatic energy prefers homogeneity of charge, so this 
mntribution could easily be invoked to suggest delocalization. Indeed a picture of a 
homogeneous distribution of isolated lines of holes gaining -9A, energy per hole is 
an intriguing prospect of simultaneously ensuring local density fluctuations and global 
inhomogeneity of charge. These kinds of phase separation are reminiscent of the 
phase separation being suggested in the Y-J’ model [IT, although their origins are 
quite different. 

There are two types of delocalization in this description. First, the motion of 
vacancies, q:, in a dense cluster of holes, and second the motion of isolated triples 
and the boundary of any cluster. The first effect seems very unlikely to lead to a 
superconducting instability, and it is only the second effect that needs to be seriously 
considered. Fluctuations in the boundary of any cluster are certainly charged and 
could, in principle, lead to superconductivity if there were long-range phase mherence 
which induces some form of gap. However, we do not believe that these h i t s  have 
been realized in currently known experimental systems. 

5. The delocalized limit 

We now consider the limit that is easiest to justify experimentally. This is to assume 
that the nearest-neighbour Coulomb repulsion is much smaller than the charge 
transfer gap, V d: A. 

Although we are predominantly interested in the two-particle interactions (3.2) 
the ’single’-particle terms (3.B) dominate in this limit Furthermore, it is these terms 
(along with the superexchange term) which determine the underlying spin correlations. 
So, before proceeding to discuss the two-particle interactions we study one charge 
carrier first. As has been discussed elsewhere [lS, 191, the motion of a single oxygen 
hole in the Cut limit is rather subtle. Below we briefly analyse this in the Up + 05 
limit; a full a m u n t  of the Up = 0 limit is given in Barford [lo]. 



Smng-coupling descriptions of hightemperature superconductors 209 

cY--I-c"-I-c"-,--cy 
2 1 2 1  

c"-l-c"-,- cu-,-cu 
2 2 1 2  

~--l-c"--l-c"--l-c" 

2 2 2 2  

C"--l-c"-,-c"-,--cy 

(4 

101 0 I b l  0 0  

, , O ~ O ,  O C " O U , O  

0 0 0  

0 Id I n o  I C 1  

o m 0  0 C" 0 C" 0 

0 0 0  0 0  

0 C" 0 C" 0 C" 0 0 C" 0 C" 0 

0 0 0  0 0  

0 0 0  0 
I I I I I 

I I I 
0 

1g1 Ih1:ldl 
0 0 0  

(4 
Figure 3. The mnfigurations of atoms lrred 4. Sevsral ways of breaking the oxygen 
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sublattices. (c) 'Dvo sublattices Mere the Squares' 
relevant for non-bonding orbitals play the dominant 
IUlt 

The relevant Hamiltonian is (3.2b) 

HI = B I X  DiFj + C, d!,,diurpj,,,,pjo. (5.1) 
( i j )  (92 j ')o 

The first term yields a constant energy for each oxygen hole provided that each copper 
site is occupied, so it is ignored. The ground and excited states are easily found for 
one plaquette (namely, a copper site surrounded by four oxygen sites). The ground 
state is a singlet spin configuration with the charge delocalized: 
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with delocalization energy -3C,. This corresponds to the ‘Zhang-Rice’ singlet 1131. 
The lowestlying triplet excitation is triply degenerate: 

W &ford and M W Long 

P i )  = ( ~ / f i ) d f , ( P j ,  - PjrJIc9 (5.W 

for some pair j ,  j’ at the delocalization energy -Cl. 
The problems emerge when we tq to delocalize the hole on the lattice. A hole 

on an oxygen site is a nearest neighbour to two copper sites. Although it is passible 
for the oxygen spin to be simultaneously in a spin triplet with respect to these copper 
sites, and hence generate a ferromagnetic state, it is not possible to simultaneously 
make the oxygen spin singlet with respect to the two copper spins. 

The purely ferromagnetic solution has the spectra as shown in equation (5.3), 
where 2a is the copper-copper spacing. In addition to the bonding band there is a 
non-bonding band at -2C1: 

(5%) 

( 5 . 3 )  

no.-bonding - 
‘I’ - -2c1 

= -2Cl + 2C, [cos(2ksa) + cos(2k.,a)] . 
Evidently, even restricting the 1-1 singlet to one plaquette gives a lower energy 

than the best ferromagnetic solution. At lint sight we should therefore discard 
ferromagnetism and study more reasonable situations. We will not do this, however, 
for two reasons. Fmt, if all the spins are parallei, then the copper spin system 
becomes passive and we may consider the charged oxygen system in isolation. This 
gives a way of separating the spin-Euctuation-induced many-body particle interactions 
from the direct charge-fluctuation-induced interactions. Second, by diagonalking 
the two-body Hamiltonian around a single plaquette we derive the effective two- 
body potenrials We look at the two-particle interactions in the ferromagnetic state 
in section 5.1, and consider the lowspin scenario in section 5.2, summarizing in 
section 53. 

S.1. Ferromagnetism 
The two-particle interactions are now simply 

H2 = B* PjPj, + c, P,’,PkPj. 
(ijj!) ( C i j ’ k )  

(5.4) 

In the limit of interest, A, > A2 > A3, the iirst term is a repulsion between pairs 
of holes on the same plaquette. The question arises as to whether there a two-particle 
wavefunction for which the second term is attractive and dominates the first term. 

In the diagonal representation the two-particle Hamilitonian is 

3 3 

Hz = 4A, b2b; - SA, c c2.1 (5.5) 

b p -  i t  - ; ( p 2  + p; ) (p :  + 

i p = l  i p=l 

where 

( 5 4  

c2 = $(g - p;)(p;t  - p6 it ) (5.6b) 
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and where the sum i is over plaquettes and the indices { a , D , y ,  6) label the different 
oxygen sites around the ith plaquette. The index p corresponds to the three ways in 
which the four oxygen sites in the plaquette can split into two pairs, a,@ and 7,6. 

Evidently, in a system with purely repulsive interactions we have found an 
attractive pairing. Pairs of holes in the C: configuration feel an attraction with 
an eigenvalue of -SA,, which corresponds to a coupling of 0.5 ey using the data 
in section 1. 

The dominant effect is a repulsion between a pair made up of a hole in phase on 
one pair of sites and another hole in phase on the other pair of sites. The weaker 
attractive combination is the antiphase combination of the two holes. If we consider 
ci  as a Cooper pair, then we may deduce something about the symmetry of the 
superconducting gap function. 

Let us now reconstitute the lattice. If we consider the two-particle interaction in 
isolation, then the natural Cooper pair has one member on one oxygen sublattice and 
the other member on the other sublattice. Since the pairs have parallel spins the spin 
symmetry is symmetric The sublattice degree of freedom is antisymmetric and so 
the final spatial symmetry is therefore symmetric. Three ways of assigning sublattice 
indices are shown in figure 4. Pairs moving parallel to the Cartesian axes would favour 
the situation depicted in figure 4(u). Holes with a uniform wavefunction would feel 
the repulsion mediated by b l ,  whereas holes with alternating phase would feel the 
attraction mediated by c i .  A similiar situation holds in figure q b ) .  Figure 4(c) 
shows holes on the ’squares’ interacting with each other. The relevant situation to 
consider is that corresponding to holes at the Fermi surface, for these can make use 
of the weak attractive interaction at little loss in kinetic energy. However, there is 
a complication as the lowest band in the ferromagnetic bandstructure is flat, and so 
there is an implied degeneracy. The kinetic energy is optimized using the non-bonding 
band. Inspection of the non-bonding solutions resolves the predicament. We observe 
that a single hole delocalized on one of the ‘squares’ in figure 4(c) with an alternating 
phase around the ‘square’ is an eigenstate of the Hamiltonian, and corresponds to a 
real-space non-bonding orbital. The alternating phase is perfect for gaining the two- 
body attraction and so we find that the ground state for the ferromagnet, with weak 
two-body interactions included, is composed of localized non-bonding states clustered 
together in a pattern similar to figure 4(c). However, this is still not a scenario for 
superconductivity as the states are localized. 

There are bonding States that are degenerate with the non-bonding states; those 
for which -yk = It(?r/h)(l, 1). These mates have precisely the alternating symmetry 
of figure 4(b) and so could conceivably cany current. A close inspection of the 
wavefunction shows that ‘s-wave’ pairs suffer the repulsion while the ‘d-wave’ pairs 
feel the weak attraction. 

5.2. Low q i n  

For three spins the low-spin scenario is total spin i. we analyse this case to tty to 
deduce the sort of Cooper pair m be expected in a low-spin ground state. 

The ’two’-particle interactions are 

In a total spin $ subspace the diagonalized Hamiltonian is 



2 3 

+ (A,  - 6A3) cg i tg ;  - (AZ - l O A , ) x  h r h ; .  (54 
i p=l i p= l  

Again we find an attractive channel, now corresponding to the h: combination 

and, as before, { a , P , ~ , 6 }  labels the oxygen sites, and the index P runs over the 
possible nays of splitting the sites into pairs. There is another representation for this 
quantity that is not orthogonal but that is very suggestive: 

From this representation it is clear that the local singlet pairs of one copper and one 
oxygen hole are all in phase, while the ‘f’ contributions are in opposite phases on the 
two ‘sublattices’. 

Let us now consider the symmetry of the ‘Cooper pairs‘. The object h: does not 
ueate a pair of particles, but a triple. The important point, however, is that only two 
of these particles, the oxygen holes, display a charge degree of lieedom. The -per 
hole displays only a spin degree of freedom and so, although it participates in the 
spin symmetry of the Cooper pair, it does not stop the object being doubly charged, 
and does not participate directly in the motion of the pair. Considering the two 
oxygen holes to be the pair and the mpper hole to be a ‘sink’ for ’unwanted quantum 
numbers’ we lind that the pair has mixed character. The natural separation when 
the lattice is reconstituted is again into the two sublattices. We find, from (5.9a), 
that two Mhs of the wavefunction has the pair in a relative singlet with symmetric 
sublattice coupling and symmetric spatial symmetry, while the other three Nths has 
the pair in a relative triplet with antisymmetric sublattice coupling and symmetric 
spatial symmetry. This predicts an ’s-wave’ spatial gap function. 

The final issue to deal with concerns the relation between the single-particle 
solutions and the pairing interactions. Are the holes at the Fermi surface of the 
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correct symmetry to make use of this attraction? For the ferromagnetic case this was 
easy; an analysis of the low lyiing single-particle wavefunction showed that the local 
symmetry was precisely that of the combinations making up the Gmper pairs. We do 
not have the exact single-particle wavefunctions for the low-spin case, so approximate 
arguments are necessary. 

In order to determine the local correlations in more detail we performed a ground 
state calculation for two oxygen holes on the cluster of figure 5(a) using the 'single'- 
particle Hamiltonian (5.1). The ground state is a total spin singlet, with the four 
states pictured in figure 5(b) forming a basis. It is found that the ground state is 
predominantly 11) and 12) with a small admixture of 13). The eigenvalue is -5.6613C1 
to be compared with the unfrustrated bound of -6.0C1. The important comparison 
is between 12) and 13), which have both holes neighbouring the copper site, and the 
state described by hL. There is no a priori reason for the present wavefunction to 
be related to hL, but there is a strong resemblance. The phases are such that all the 
singlets of copper and oxygen holes are in phase, and the hole on the central oxygen 
site in 12) is in antiphase with the non-singlet contributions in 13). This is the closest 
wavefunction to h t  which can be made with the restricted symmetry. The dominant 
central hole is antiphase with the two elements of the other sublattice, in agreement 
with (5.9b). 

5.3. ficussion 

Let us now consider whether or not the attractive ChaMek found in the above 
discussions are relevant to the full many-body problem. Since we cannot solve this 
problem exactly the discussion will necessarily be rather general. 

In the weak-coupling limit the Hamiltonian (3.2) is 

H = H I  i- H2 (5.10) 
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with H ,  given by (5.1) and H, by (5.7). Now, HI is the dominant term, and implicitly 
contains many-body interactions which cannot be solved. H2,, however, can be solved 
and contains explicit interactions. The question is, are these interactions sympathetic 
to those of HI? TI analyse this let us write H, as 
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H, = H:) 
i 

(5.11) 

where the sum is over all plaquettes. H f )  can be readily diagonalized, as shown in 
sections 5.1 and 5.2. We therefore write 

(5.12) 

where E ,  is the eigenvalue that corresponds to the eigenfunction IX;) = XitlO). 
The operator X i t  creates the ‘Cooper pairs’ of equations (5.6) and (5.9). There are 
four negative eigenvalues (attractive channels) and fourteen positive ones (repulsive 
channels). These may be regarded as being short-range attractive and repulsive two- 
body potentials. 

Since H ,  is the dominant term we need to consider which symmetry (two oxygen 
hole correlations about the same plaquette) this term prefers. If its ground state 
wavefunction has correlations described by an IX,) with a negative eigenvalue, then 
H, automatically acts as an attractive potential, and vice versa For the ferromagnetic 
case we showed that the wavefunction associated with HI had precisely the right 
correlations to experience the attractive potential. This was confirmed for the low- 
spin case by the calculation on the cluster of hvo neighbouring plaquettes 

The full many-body eigenstate of (5.12) will, in general, contain superpositions of 
all the basis states which span the Hilbert space. These basis states will, in turn, have 
as components the IX,)s. Fmm the previous discussion, we expect these terms to be 
dominated by the attractive channels. Although we cannot state the precise symmetry 
of the Cooper pairs, as they will be superpositions of the x$s, the duster calculation 
suggests that if the total spin of the complete many-body wavefunction is zero then the 
Cooper pair will be spatially symmetric. In the high-temperature superconductors the 
motion of the holes coupled to the Heisenberg term has a dominant effect, destroying 
long-range magnetic correlations and guaranteeing that the total spin is in a total spin 
singlet. ?his calculation therefore lends evidence to the suggestion that the charge 
fluctuations coupled to the Coulomb repulsion result in ‘s-wave’ pairing. 

6. Conclusions 

The copper oxide systems are characterized by charge transfer resonances due to the 
proximity of the atomic copper and oxygen energy levels. These charge fluctuations, 
coupled to the nearest-neighbour copper-oxygen repulsion, V, have been investigated 
by deriving effective Hamiltonians which describe the lowenergy behaviour, starting 
from the generic two-band model. We considered hole doping only. 

When Cu2+ - Cu3+ fluctuations dominate we find a description in which the 
oxygen hole forms a singlet with the copper spin. This entity propagates through the 
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square lattice like a vacancy in a single-band Hubbard model. This is equinlent to 
the description of Bang [15]. The effect of the copper-oxygen repulsion is to cause 
a nearest-neighbour repulsion between these singlets. The reason for this repulsion is 
that during the oxygen hole's Virtual occupation of the copper site it feels a repulsion 
from all the Oxygen holes neighbouring that copper site. 

If Cuz+ - Cu+ fluctuations dominate, however, we have shown that short-range 
Coulomb repulsion can give rise to attractive interactions between some of the charge 
camers in the System. This is because during the 'copper' hole's virtual vacation of 
its site and occupation of a neighbouring oxygen site it avoids the repulsion from all 
the oxygen holes neighbouring that copper site. 

The overall behaviour is governed by the ratio of the copper-oxygen repulsion 
to the charge uawfer gap, V/A. When 0 << V/A < i, we proved that charge 
clustering takes place by showing that clusters of charge are more stable than isolated 
charges. On the other hand, when 0 < V/A < i, the singleparticle terms dominate 
and the question of whether weak-coupling superconductivity exists is a subtle one 
which we have not been able to address unambiguously. As we. discussed in detail in 
section 5.3, the Hamiltonian mntains both attractive and repulsive short-range two- 
body potentials. The holes at the Fermi surface will only experience the attractive 
potentials if they have correlations consistent with them; otherwise the repulsive 
interactions will act. On a small cluster we showed that the correlations are consistent 
with the attractive potentials, and indicate %'-wave pairing. Experimentally, V/A 
would appear to be about V4, placing the copper oxide systems in the weak-coupling 
limit. 

FmUy, let us recall the approximations made in these calculations. We derived an 
effective Hamiltonian of O(t2), thereby neglecting spin fluctuations. The copper and 
oxygen Coulomb repulsions were assumed ve'y large, which forbids double occupation 
of copper and Oxygen sites. The latter constraint is probably too severe, and tends 
to work against the attractive mechanisms operative here. Lastly, the direct oxygen- 
Oxygen hybridization was neglected. 

Appendix 

The analysis of section 2 is completed by inverting the operator fCjn of 
equation (21~). The solution may be deduced from the more general problem 

where the pi are mutually commuting projection operators: 

Pf = P;. (4 
Obviously df,d,, and p jup ju  are projection operators, but if double occupancy is 
prohibited then D; = E, d:,,d;, is effectively a projection operator since 

0: - D; = Zd!,df,d;,d;, 

and the right-hand side only contniutes when a site is doubly occupied. 



216 WBnford and M WLong 

We may invert the operators iteratively by observing that 

and hence 

where I denotes all the subsets of {1,2,. . . , N ) .  
A linal result which is of use in deriving the forms presented in section 4 is 

N -1 N 

i= l  i ,=l  i,il i , izi ,  
[. - V c  e] = A, + A, e, + A2c PI, Piz + A, P;,PilP;, . . . (A6) 

where 

A, = [ V / ( A  - nV)]A,-l A, = 1/A (A7) 

and {ilizi3) denotes mutually exclusive labels including all permutations. 
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